Example 15 One mapping (function) is selected at random from all the mappings of the set $A = \{1, 2, 3, ..., n\}$ into itself. The probability that the mapping selected is one to one is

(A)
$$\frac{1}{n^n}$$
 (B) $\frac{1}{\lfloor n \rfloor}$ (C) $\frac{\lfloor n-1 \rfloor}{n^{n-1}}$ (D) none of these

Solution (C) is the correct answer. Total number of mappings from a set A having n elements onto itself is n^n

Now, for one to one mapping the first element in A can have any of the n images in A; the 2^{nd} element in A can have any of the remaining (n-1) images, counting like this, the nth element in A can have only 1 image.

Therefore, the total number of one to one mappings is n.

Hence the required probability is $\frac{|n|}{n^n} = \frac{n|n-1|}{n n^{n-1}} = \frac{|n-1|}{n^{n-1}}.$